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The article deals with the problem of determining the compressive and shear mod- 
uli, and also the shear and bulk viscosity of a viscoelastic medium with spher- 
ical inclusions of some other viscoelastic material. Calculations are presented 
for an elastic medium with inclusions of a viscous liquid. 

When the linear scale of the fields of mean strains and stresses in a composite material 
greatly exceeds its inner structural scale characterizing the dimensions and disposition of 
inhomogeneities, then it is natural to describe the process of deformation within the frame- 
work of a continual approximation. Then two fundamental problems arise: derivation of the 
averaged equations and their closure, i.e., obtaining notions for the effective characteris- 
tics of the material under examination. 

The mentioned continual equations are usually postulated phenomenologically or they are 
obtained by spatial averaging, and their closure is effected on the basis of independent meth- 
ods reviewed in [1-3]. Most of these methods suggested for elastic materials with discrete 
inclusions are based on variants of the semiempirical cell model [4] on the self-consistent 
model [5]. A strict analysis with low bulk concentration of the discrete component was car- 
ried out in [6] by the method of summation of binary interactions between the inclusions, 
which was suggested for the first time in [7] for the problem of settlement of suspensions. 
Out of the recent attempts to construct a relatively complete theory for arbitrary concentra- 
tions of inclusions we mention [8]; a general discussion of the problem in connection with 
the continuum mechanics of inhomogeneous elastic media is contained in [9]. Generalization 
of these results to materials with viscoelastic components is usually carried out on the bas- 
is of the so-called "elastic--viscoelastic analogy" [3]; some conclusions that are useful in 
this connection are presented in [10-13]. 

The solution of both mentioned problems by one schema is possible with the use of the 
method of averaging over the ensemble of physically admissible configurations of the system 
of inclusions in combination with methods of the theory of self-consistent fields. Such meth- 
ods were worked out and successfully used for solving analogous problems in the hydrodynamics 
of incompressible suspensions [14] and in the theory of heat and mass transfer in disperse 
media [15]; as far as the present authors know, these methods had previously not been used for 
the analysis of solid deformed materials. 

Averaging over a configuration ensemble has the following fundamental advantages. First- 
ly, the continual equations are derived and closed by the same methods, i.e., it is not nec- 
essary to invent special models for determining the effective properties. Secondly, there is 
no need of additional hypotheses on the correlation of the results of averaging over spatial 
objects of a different nature -- volume and variously oriented facets. Thirdly, there is no 
need to demand that a large number of inclusions be contained in a small physical volume, and 
the solution of the continual equations describes the most probable state of the material. 

Below we investigate the dynamic behavior of a composite material consisting of a con- 
tinuous viscoelastic matrix and spherical inclusions of some other viscoelastic material dis- 
tributed in the matrix. The properties of material of a special type were studied in more 
detail: of an elastic medium with inclusions containing a Newtonian viscous liquid; such 
material may be regarded as the model of real filled porous strata. 

General Theory. We will describe the mechanical behavior of the matrix and of the mat- 
eria~in the inclusions with the aid of a single equation 
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DO~U/Ot~ = v ~, ( i ) 

with small deformations the stress tensor is expressed through the strain tensor and the dis- 
placement vector as follows: 

~ = B l d i v U + 2 F (  E - 1 l d i v U ) 3  ' (2) 

and the components B are represented in the ordinary way through the derivatives of the com- 
ponents U with respect to the coordinates. 

The true values of B and F in (2) for viscoelastic materials may be regarded as operators. 

B=K+Z a-- F = M + H  o (3) 
" Ot ' 

The displacement vector U, the stress tensor Z and the strain tensor E, density D, and 
also the coefficients in (3) are generalized functions, continuous in the matrix and in the 
inclusions but possibly having discontinuities on interfaces. They can be easily written if 
we introduce the characteristic function 8, which is equal to unity at points occupied by the 
matrix, and equal to zero inside the inclusions. For instance: 

K=koO+k~(1--O),  Z = ~ O + ~ ( l - - O ) ,  
214 =~o 0 + ~ (1 i._ 0), H = n~ "-l- ~1 (| - -  0). 

For purely elastic material ~ = q = 0, and k and ~ are the bulk modulus and the shear 
modulus, respectively; for a compressible Newtonian liquid ~ = 0, k is the modulus of com- 
pressibility, ~ and n are the coefficients of bulk and shear viscosity, respectively. 

The problem consists in obtaining the following equations from (i) and (2) with a view 
to formulas (3): equations for the mean displacement vector u and the mean stress tensor ff 
and the mean strain tensor E, formally associated with some homogeneous continuum modeling 
the composite material, and also in calculating all the coefficients appearing in such equa- 
tions as functions of the moduli of elasticity and coefficients of viscosity of the materials 
of the phases, of the concentration of theinclusions and of structural parameters character- 
izing the packing of the inclusions. We point out that we do not deal here with the relative 
motion of phases or components of the material; this limitation is important for suspensions 
[16]. 

The mentioned equations can be obtained by averaging (i) and (2) with respect to the dis- 
tribution function of the positions of the centers of the spherical inclusions which fully 
describes their configurational ensemble; the corresponding mathematical apparatus was devel- 
oped in [14]. Omitting intermediate considerations, we present here these equations, and also 
the formal relations for the magnitudes they contain, which characterize the effective pro- 
perties of the composite material, and we also present the formulation of the problem of an 
isolated (test) inclusion whose solution enables us to express the mentioned magnitudes ex- 
plicitly. It is expedient to apply first the Fourier transform with respect to time to (I)- 
(3); this leads to the replacement of the operator B/Bt by the factor i~; in the subsequent 
analysis the same designations were used for the transformations of the variables as for the 
corresponding originals. 

Averaging the transformed equations (i) and (2) over the configurational ensemble leads 
to the equations 

- - d e ~ u  = V if, d = d ~  + do (1 - - p ) ,  

( 1 1  divn) ' (4) a=~ld ivu-F2~ e - -  3 

where ~ is expressed in the ordinary way through the derivatives of u, and the following mag- 
nitudes are introduced: 

(5) 
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Fig. i. Dependence of the relative modulus 
of elasticity E/Eo and of the Poisson ratio 
v for the experimental conditions in [21] 
(E,/Eo = 40.8, vo = 0.45, v, = 0.21) and of 
the relative compressive and shear moduli 
for the experimental conditions in [22] (ko/ 
~o = 2.2, k,/~o = 32, ~,/Bo = 24.3) on the 
bulk concentration of the spherical inclu- 
sions: i) Eqs. (9) and Hill's theory [5]; 2) 
Eqs. (Ii); 3) theory of Kerner--Levin [8, 19]; 
dots) experimental data. 

Here, k, ~ are the bulk and shear modulus, respectively; ~, n are the coefficients of bulk 
and shear viscosity, respectively, referred to the heterogeneous material as a whole. In 
principle they can be determined from the relations [14-16] 

(I 5 - -  I~0) div u ---- ([31 - -  I~0) n S div u'dr,  
r~<a 

(6) 

which essentially are equivalent to the formulas obtained in [17]. Integration here is car- 
ried out with respect to the volume of a single test inclusions with the center at the point 
r = 0, and the asterisk as superscript indicates the magnitudes obtained by averaging with 
respect to the nominal distribution function of the positions of the centers of other inclu- 
sions corresponding to the configurations in which the position of:!the test inclusion is fixed. 

For nominal means with one fixed inclusion we can easily obtain equations of the same 
form as (4). However, the coefficients in them, which replace 8 and y from (5), have to be 
determined from relations type (6) in which the integrands contain magnitudes obtained by av- 
eraging with respect to the ensemble of configurations with fixed disposition of the centers 
of two inclusions [14]. By continuing this process we can obtain an infinite chain of mutual- 
ly connected equations for the nominal means corresponding to the ensemble of configurations 
in which the position of the centers of different numbers of inclusions are fixed. As a re- 
sult there arises the problem of terminating or closing this chain; it is analogous in mean- 
ing to the same problem in the physics of dense gases and liquids or in the statistical the- 
ory of turbulence. Constructive closure can be effected on the basis of the hypothesis of 
the proportionality of the effect of inclusions on the physical properties of the medium near 
the test particle to their nominal mean bulk concentration P* which asymptotically tends to p 
with increasing distance to the test inclusion [14, 15]. Then outside the test particle we 
may write 

u O  ) = u q -  u ' ,  8 (1) = ~ - ~  ~' ,  o (1) = o -[- o ' ,  

o '  ~ ' l d i v u ' q - 2 ? ' ( 8 ' - - - L  I d i v u ' )  ' 3  

where the tensor ~' is correlated with the derivatives of u' by an ordinary linear relation, 
is expressed through r and u in accordance with (4), and 8' and y' can be represented in 

the form 
p* p* 

P' = ~ + (~ -- P0)--, ~" = ~ + (v -- ~) , p* = n ~ ~ (r) dr. 
P P r~<a 

The function ~ (r) is expressed in the standard way through the binary distribution func- 
tion of the inclusions characterizing the structure of the examined heterogeneous material 
[14]. 

317 



J 

/ 

/ 

Fig. 2. Dependences of the relative shear 
moduli P/Bo for weakly compressible elastic 
composites on p (solid and dashed lines cor- 
respond to U,/~o = 10 -2 and 102 , respective- 
ly) and on B,/~o for p = 0.5; the notation 
of 1-3 is the same as in Fig. i. 

The boundary-value problem of the test inclusion has the form 

- -  d ' ~ ' i l '  = Va ' ,  r > a; - -  d,~'u~2! = V ~  ~,  r < 

d '  = dap* '+  do(I - - p * ) ;  u ' ,  e ' - ~ O ,  r - -*  ~ ;  (7)  

u h - u ' = u  t2~, . ( a 4 - o g = n ~  (~, r = a ;  u (a~, st! ) < ~ ,  r=O. 

Here, n is the unit vector of the normal to the surface of the inclusion, and the stress 
censors are correlated with the corresponding strain tensors and displacement vectors by the 
relations presented above. The primes denote magnitudes describing distortions introduced by 
the test inclusion into the averaged fields u, e, and o. The tensor components o and c are 
determined at a point occupied by the center of the test inclusion, as if this inclusion were 
not there at all, the in solving problem (7) they may be regarded as specified. The magnitude 
d' = d,p* + do(l -- p*), and u (2) and ~(2) by definition coincide with u* and c* contained in 
(6). Formally (7) is a boundary-value problem of the deformation of a spherical particle in 
a fictitious medium whose properties depend in a certain way (dictated by the form of the 
function ~ (r) characterizing the packing of the inclusions) on the position of the point re- 
lative to the surface of the particle, with specified state of strain while moving away from 
it. The solution of this problem depends on the values of k, ~, ~, and n, as well as on the 
parameters. Using this solution in the calculation of the integrals in (6), we arrive at a 
system of transcendental equations with respect to these magnitudes whose solution makes it 
possible to find them as functions of known moduli and coefficients of viscosity of the mater- 
ials of the matrix and of the inclusions, and also of p and of the parameters used in the de- 
termination of the function ~ (r). It is clear from the form of Eq. (4) that the mentioned 
magnitudes fully describe the elastic and ductile properties of the examined type of composite 
material in continual approximation. 

The function ~(r) depends on details of the packing of the inclusions, and its determin- 
ation under various conditions represents a complex problem of statistical physics; within 
the framework of the theory developed here, this function has to be regarded as known. For 
isotropic materials with random distribution of the inclusions we can use directly the results 
of the classical theory of dense gases and liquids, determining ~ (r) on the basis of the known 
approximations of Kirkwood, the hyperchain approximation, the Perkus--Jevik approximation, as 
was done, e.g., in [18] in the calculation of effective ductility and thermal conductivity. 
The simplest results are obtained when the effect of the test inclusion on the disposition of 
the other inclusions is altogether neglected. This is permissible for materials with relative- 
ly small bulk concentration of the inclusions, and it corresponds formally to the model in 
which ~ (r) = 1 and p* = p, i.e., the test inclusion is submerged in a homogeneous fictitious 
medium whose properties coincide with the corresponding properties of the material as a whole. 
In this case we thus arrive at a simple variant of the self-consistent theory which was sug- 
gested for the first time in [5] on the basis of empirical considerations. The use of an an- 
alogous model in the hydrodynamics of suspensions and in the theory of heat and mass transfer 
led to satisfactory results up to and including values of p = 0.20-0.25 [16, 18]. 

As the subsequent approximation, also suitable for concentrated systems, it is natural 
to consider the discontinuous function p* = 0 for a < r < 2a and p* = p for r > 2a; this leads 
to a model in which the fictitious medium with homogeneous properties is separated from the 
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TABLE I. Effective Relative Viscosity n /~o  of Mono- 
disperse Suspension of Rigid Spheres in an Incompres- 
sible Viscous Liquid According to Different Models 

No. o f  P 

m o d e l  0, ! 0,2 0,3 0,4 0,5 

1 , 3  �84 

1,3 
1,3 
1,3 
1,3 

2,7 
1,6 
1,7 " 
1,7 
1,8 

4,0 
2,1 
2,3 
2,4 
2,7 

oo 

2,6 
3,2 
3,5 
4,5 

3,5 
4,6 
6,0 

Note: i) n/no = (i - 50/2)-*, which corresponds to 
the first formula in (i0) and to Hill's theory [5]; 
2) theory from [8, 19]; 3) model with free concentric 
layer (Eq. (ii)); 4) numerical calculation in [18] 
for a model with uniform distribution of the centers 
of particles outside a sphere with radius 2a, concen- 
tric with the test particle; 5) numerical calculation 
in [18] for Kirkwood's superposition model. 

surface of the test inclusion by a concentric layer with thickness a filled with pure mater- 
ial of the matrix. It seems that this type of model was suggested for the first time in [19], 
then it was dealt with by many authors [2, 3] but the thickness of the layer remained unde- 
termined. 

Further refinement entails the use of stricter notions for ~(r). In this case the pro- 
perties of the fictitious medium surrounding the test inclusion prove to be dependent on the 
distance to its surface, and in solving problem (7) it is indispensable to use numerical meth- 
ods [18]. We point out that the suggested general schema is not only suitable for investigat- 
ing randomized, but also ordered structures if the function (r) is determined in the corres- 
ponding manner. 

Effective Properties. Continual description of the deformation processes of heterogene- 
ous media is justified if the characteristic scale % of the mean stress and strain fields is 
much larger than the scale of the internal structure which for the type of media under exam- 
ination with the use of ensemble averaging may be identified with the size a of the inclusions. 
Thus, we have the indispensable condition ~ >> a. In dynamic deformation of elastic media 
is equal in order of magnitude to the length of the longitudinal or transverse elastic waves 
c/w, where c ~ ({k, ~}/d) I/~ For nonsteady processes in viscous liquids, ~ has the order of 
the characteristic length of viscous attenuation of the pulse ({$, ~}/d~) t/2. Hence the con- 
ditions of adequate continual approximation are clear. Below we require that these conditions 
also be fulfilled for the materials of the separate phases, i.e., we take it that the follow- 
ing strong inequalities are correct: 

~ {kZ' ~J} , I ~ f ~  {~J' ~J} , 1 =  0, I. ' (8)  
d~a ~ d j~  

If for any of the magnitudes kj, ~-, ~ or ~j (j = O, i) the inequality in (8) does not 
apply, then the corresponding term on t~e rlght-hand sides of the equations in (7) has to be 
discarded to avoid excessive accuracy. Physically these inequalities correspond to the neg- 
ligible effect of the forces of inertia on the deformation process. The first group of in- 
equalities in (8) applies to solids and to compressible dropping liquids practically at all 
frequencies that are of interest. An idea of the feasibility of the second group if inequal- 
ities can be obtained by examining, as an example, a water-saturated (v ~ 0.01 cma/sec) por- 
ous body with the characteristic pore dimension 0.001 cm, where it follows from (8) that 
I~I << i0 ~ rad. We note that inequalities analogous to (8) need not be fulfilled when a is 
replaced by the macroscopic scale ~. 

Within the framework of the simplest model, where the test particle is submerged in a 
homogeneous fictitious medium, problem (7) reduces to the well-known problem of distortions 
introduced by a spherical particle into the state of uniform strain of a continuum. Using 
the solution of this problem, we obtain from (6) after some calculations the equations for 
the complex moduli 8 and y: 
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Fig. 3. Relative shear moduli and shear 
viscosities of an elastic matrix with cav- 
ities filled with a viscous liquid as func- 
tions of p (solid and dashed curves corres- 
pond to ~ = 10 -2 and i02, respectively) and 
on ~ for 0 = 0.5; the notation of 1-3 is 
the same as in Fig. 1 

~' = ?o + ( V ( - -  %) 
15 (~ 4- 47/3) 

9p + 8v + 6 (p + 2y) (wl~) 

6 ~- 4?/3 
6 = 6o 3- (6, -- [~o) 61 + 4W3 P, 

P, 

(9) 

which formally coincide with those obtained in [5], where elastic materials only were dealt 
with. These equations are substantially simplified for weakly compressible materials (181 >> 

Iv I), when 

u = {% (3--5p) - -  ?~ (2 --5p) q- 1(?0(3-- 5p)-- ?~(2--  5p))t q- 24yoVIIU2}, 6 = 60O q- 6~ (I - -  p) ( i0 )  

This  l a s t  r e l a t i o n  c o i n c i d e s  f o r m a l l y  w i t h  an  a n a l o g o u s  fo rmula  i n  [19] .  For p << I ,  we can 
e a s i l y  o b t a i n  t he  f o l l o w i n g  from (9) w i t h  an a c c u r a c y  to t h e  terms of  the  f i r s t  o r d e r  w i t h  
r e s p e c t  to  O i n c l u s i v e l y :  

15 (60 q- 4%/3) 

960+ 8y0 q- 6 (60 q- 2%) (?iI?0) 

60 �9 (61 - -  .Bo) 60 + 4?o/3 
6~ Jr 4?0/3 

P, 

It can be shown that in special cases the well-known Einstein formulas follow from this 
for the viscosity of incompressible dilute suspensions, the formulas of Oldroyd, Mackenzie, 
and Hashin for the elastic moduli of composite material with elastic matrix and viscous in- 
clusions, and some others [20]. 

Relations (9) and (i0) are approximately correct only for moderately concentrated sys- 
tems. For mixtures with higher concentration it is natural to use as reasonable approxima- 
tion a model according to which the test particle is separated from the homogeneous fictitious 
medium by a concentric layer of thickness a filled with pure material of the matrix. In that 
case we obtain from (7) a three-layer boundary-value problem whose solution is also given in 
[3]. In particular, inside the test inclusion the components of the displacement vector with- 
out the angle parts are 

u~ 2~ = u,  = A ~ r  - -  6 ~  A~r 3, u~ a = a~ = A~r - -  7 - -  4v____~ A~r', 
l'--'2vf I--2vi 

where the arbitrary constants Aj are determined together with the constants contained in the 
expressions for the components of the displacement vector inside and outside the layer a < 
r < 2a from the system of algebraic equations that follow from the boundary conditions for 
r = u and r = 2a (this system is too cumbersome to be presented here). In our case we obtain 
from (6) the equations 
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Fig. 4. Dependences of the tangent of the 
loss angle tan ~ of the transverse and long- 
itudinal elastic waves (dashed and solid 
curves, respectively) on p for ~ = i and on 

for p = 0.3 and 0.5 (the numbers next to 
the curves). 

=~o+(~-~) Bo+-s ~+-~ - (~-~o)(~-~o) p x (II) 

x ~ o +  ~ ~i+-s +-f(~i-80)(~-~0) . 

Although for finding 8 and y in accordaince with (ii), only the constants Aj are needed, 
determining the latter requires the mentioned system of algebraic equations to be completely 
solved; this is most simply done numerically. We note that relations (9) and (I0) are equal- 
ly correct for monodisperse as well as polydisperse mixtures with moderate concentration. On 
the other hand, Eqs. (ii) are based on a model which substantially uses the assumption that 

the spherical inclusions are equal in size. Therefore, although the results for 8 and y ap- 
plied to a monodisperse mixture do not depend on the size of the inclusions, their applica- 
bility to polydisperse mixtures with large scatter of the radii of the inclusions appears, 
generally speaking, doubtful. 

Figures 1 and 2 present the results of analytical and numerical calculations of the ef- 
fective properties of composite material consisting of an elastic matrix and elastic inclu- 
sions, and also experimental data from [21, 22]. It can be seen that the results of the sug- 
gested theory occupy an intermediate position in relation to those following from Hill's the- 
ory [5] described by formulas (9) and (i0) and those following from Kerner's theory [19] which 
for materials with spherical inclusions coincide with Levin's theory [8]. Hill's theory, 
which is correct for moderately concentrated materials only, describes the experimental val- 
ues of the Poisson ratio from [21] better even at high concentrations. This artifact is ap- 
parently due to the fact that the system of inclusions in the materials dealt with in [21] was 
substantially polydisperse. 

It is difficult to arrive at a definite conclusion on the basis of Fig. 1 as to which of 
the theories corresponds best to the experiments. To find an answer to this question, we car- 
ried out analogous calculations of the effective relative viscosity of monodisperse suspen- 
sions of rigid spheres in an incompressible Newtonian liquid, for which there are many ex- 
perimental data available. The values of relative viscosity obtained in [18] with the aid 
of the numerical solution of problem (7) agree very well with the experimental values if p* 
in the vicinity of the test particle is determined on the basis of Kirkwood's superposition 
model; the agreement is somewhat poorer if we assume uniform distribution of the centers of 
the inclusions outside the forbidden sphere r = 2a (see Table I). It can be seen that the 
results obtained in [18] and here on the basis of an approximate model with a homogeneous 
concentric layer are considerably better than those following from the theory of [8, 19], and 
this supports the choice in favor of the theory suggested here. 

The developed theory makes it possible to evaluate the characteristics of a disperse 
composite material in a broad range of change of the viscoelastic properties of its compon- 
ents. For the sake of determinacy we will examine in somewhat greater detail the effective 
properties of a material consisting of an elastic matrix (~o = No = 0) and of spherical Cav- 
ities randomly distributed in it and filled with a viscous liquid (~o = 0) which may be re- 
garded as the simplest model of a porous stratum filled with a liquid. 

If we separate in Eqs. (9) the real and imaginary parts, we obtain a system of four tran- 
scendental equations for determining the values of k, ~, ~, and n describing moderately con- 
centrated material. On the assumption that the elastic matrix and the viscous liquid in the 
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inclusions are only slightly compressible, we obtain after calculations for the shear modu- 
lus and the shear viscosity of such material from (i0): 

=~(Rc~+R'cos~'), ~ =l(--Rsm~ +R'sin~'), (12) 

where the following dimensionless magnitudes were introduced: 

= ~%/Po, R = [ ( 3 - -  ~o)~ + ~ (2 - -  5p)qq~, 

R '  = { [ (3 - -  5p)~ - -  ~ ,  (2 - -  5p) ' ] '  + [24 - -  2 (3 - -  5p) (2 - -  5P) l 'Q ' }  ~H, 

1 ~ c t g 2 - - 5 P  ~, ~ ,=  1 ~ctg  24 - -  2 (3 - -  5~  (2 5p) Q. 

I n  l i m i t  c a s e s  o f  l o w - f r e q u e n c y  a n d  h i g h - f r e q u e n c y  p r o c e s s e s  o f  d e f o r m a t i o n  we o b t a i n  
hence 

25 p ( 1 - - p )  II +I----5 P, ~I --*-- , f~-+O; 
~o 3 lh 3 3 - -  5p 

p% 2 p ...-+ - -  1 p . , ~--,- oo 
. ~, 4 ~ .  2 

(it is easy to show that the values ~ >> 1 are possible without loss of correctness of ine- 
quality (8)). 

The results of the calculations on the basis of formulas (12), and also according to the 
theory suggested here (formulas (Ii)) and by the model in [8, 19] with the use of the elastic-- 
viscoelastic analogy [3] are presented in Fig. 3. This type of data proves to be very import- 
ant in the analysis of parameters of longitudinal and transverse linear elastic waves propaga- 
ting in porous media filled with a liquid. The mentioned parameters are absolutely indispens- 
able in evaluating the characteristics of such media on the basis of the results of some geo- 
physical investigations. Cavities filled with viscous liquid lead to substantial dispersion 
of the speeds of elastic waves and to their effective attenuation. We cannot dwell in detail 
on these problems but we present in Fig. 4 the concentration and frequency dependences of the 
tangent of the loss angle of the longitudinal and transverse waves in a porous medium with 
spherical cavities filled with a liquid. As was to be expected, absorption increases mono- 
tonically with increasing concentration of inclusions, and it is characterized by distinct 
maxima at certain frequencies. 

The physical cause of such absorption of elastic-wave energy lies in the viscous dissi- 
pation of the energy of circulatory flows inside the cavities which are excited by the wave 
process. In real porous media there may also act another mechanism which will not be dealt 
with here: it is connected with the relative phase shift upon wave superposition. Evalua- 
tions show that under different conditions each of the mentioned mechanisms of dissipation 
may predominante. 

In conclusion we will deal with the problem of introducing the usually used relaxation 
times and time of elastic aftereffect for characterizing a viscoelastic mixture. It can be 
easily seen that this can be reasonably done only where the description of low-frequency pro- 
cesses is concerned, where we may confine ourselves with high accuracy to a few of the first 
terms in the expansions of 8 and T in degrees of i~. With an accuracy up to terms of second 
order included, ~ and q have to be calculated for ~ = 0, and k and B have to be expressed as 
k(~ -- ~=k(2) and ~(o) _ 2~(2) with coefficients not dependent on ~. Then, applying an in- 
verse Fourier transformation to the last relation in (4), we obtain the rheological equation 
of state of a viscoelastic mixture in the usual form 

o = k (~  1-FT~ ~>~ ~Ot2 I d i v u +  2~ (~ 1-FT"~ ~ + T ( ~  2 ~ 2 ~  8 - - - - 3  I d i v u  , 

Tp~= ~ r~ m_  kc~ r ~  - ~ T ~ =  ~c2~ 
k(o) �9 k(o) , It(o) ' it(o) ' 
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where Tk(J) and T~(j) are the characteristic times of elastic aftereffect. If we confine 
ourselves to an accuracy up to the first order with respect to im, we have to discard in the 
presented equation the terms with the second derivatives with respect to time. 

For dilute systems the equations of state with a finite number of relaxation times and 
times of aftereffect may be obtained without imposing constraints on the frequency of the 
processes under examination. In fact, in this case the complex moduli 8 and y are expressed 
as special ones of dividing the polynomials with im not higher than second order. The last 
relation in (4) may be increased to polynomials wthat are in the denominators of 8 and y, af- 
ter which is is easy to apply the inverse Fourier transformation. For instance, for incom- 
pressible materials o = 2yc, whereby 

7 = % [  1 -5 5(71---7o)~p], 
37o -5 271 

so that 

(37~ 270 a = 27o [(3 --~5p) 7o + (2 + 5p) 7~] 8. 

Applying the inverse Fourier transformation, we obtain for suspensions of elastic spheres 
in a Newtonian liquid: 

1 -5 2 Pl Ot a = 2 n o  1 -5 - ~  p • 1 -5 2-5------~ Px Ot Ot ' 

and for an e l a s t i c  matrix with c a v i t i e s  f i l l e d  with a l i qu id :  

o= p X I+, e. 
3 Po Ot 3 3 - -5p  Po Ot 

In regard to their form these relations are like the equations of state by Fr~lich--Zak 
and Oldroyd [20] ; however, the relaxation time and the time of elastic aftereffect in them 
are different. 

We note that in principle it is easy to generalize the developed theory to mixtures whose 
components obey linear equations of state differing in form from the simplest equations in (2). 

NOTATION 

a, Radius of particles (inclusions); D, detail density; d, ordinary density; E, Young's 
modulus; I, unit tensor; K, detail bulk modulus; k, ordinary bulk modulus; n, number concen- 
tration of particles; n, unit vector of the normal to the surface of the test particle; R, 
R', coefficients in (12); r, radial coordinate; Tk(3), T~(j), times of elastic aftereffect; 
t, time; U, detail displacement vector; u, mean displacement vector; B, F, operators in (2); 
S, complex modulus of compression of the mixture; y, complex shear modulus of the mixture; ~, 
macroscopic linear scale; M, detail shear modulus; B, ordinary shear modulus; 9, Poisson ra- 
tio and kinematic viscosity; Z, $ and H, n, detail and ordinary coefficients of bulk and shear 
viscosity, respectively; E, e and Z, o, detail and mean strain and stress tensors, respective- 
ly; 0, characteristic function; p, bulk concentration of particles; 0", bulk concentration in 
the vicinity of the test inclusion; 4, 4', angles in (12); m, ~, dimensional and dimensionless 
angular frequency, respectively; subscripts 0 relate to the matrix, subscripts i to inclusions, 
an asterisk to fields inside the test inclusion; @(r), binary distribution function of spher- 
ical inclusions. 
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